此配置使用随机种子,因此多次运行该将产生不同的图像。修改任何参数以创建更多不同的输出和图像大小。
以下是预期输出类型的示例:
from random import randint
import json
import base64
import boto3
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
inference_params = json.dumps({
"taskType": "TEXT_IMAGE",
"textToImageParams": {
"text": "whimsical and ethereal soft-shaded story illustration: A woman in a large hat stands at the ship's railing looking out across the ocean", # 一位戴着大帽子的女人站在船的栏杆旁,眺望着大海
"negativeText": "clouds, waves", # 指定不希望在图像中出现的元素
},
"imageGenerationConfig": {
"numberOfImages": 1,
"quality": "standard",
"width": 1280,
"height": 720,
"cfgScale": 7.0,
"seed": randint(0, 858993459), # 随机种子,用于确保生成结果的可重复性
},
})
response = client.invoke_model(
body=inference_params,
modelId="amazon.nova-canvas-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read()) # 读取并解析响应体
base64_image = response_body.get("images")[0] # 获取返回的 Base64 编码图片数据
# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)
# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
f.write(base_64_image)
print(f"图片已成功保存为: {file_path}")
{
"taskType": "TEXT_IMAGE",
"textToImageParams": {
"text": 字符串,
"negativeText": 字符串
},
"imageGenerationConfig": {
"width": 整数,
"height": 整数,
"quality": "standard" | "premium",
"cfgScale": 浮点数,
"seed": 整数,
"numberOfImages": 整数
}
}
textToImageParams字段描述如下:
注意: 在我们的text和negativeText值中避免使用否定词(“no”、“not”、“without"等)。例如,如果我们不想在图像中包含镜子,请不要在text值中包含"no mirrors"或"without mirrors”,而是在negativeText值中使用"mirrors"这个词。
colors
属性允许指定最多 10 种应该在图像中强调的不同颜色。颜色使用十六进制表示法表示,例如纯绿色为 "#00FF00"
。多次包含同一种颜色会给该颜色增加额外的强调。
下面的示例指定了以下颜色:
以下是期望的输出类型:
from random import randint
import json
import base64
import boto3
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
inference_params = json.dumps({
"taskType": "COLOR_GUIDED_GENERATION",
"colorGuidedGenerationParams": {
"text": "digital painting of a girl, dreamy and ethereal", # 梦幻而神圣的女孩
"colors": ["#81FC81", "#386739", "#C9D688", "#FFFFFF", "#FFFFFF"],
},
"imageGenerationConfig": {
"numberOfImages": 1,
"quality": "standard",
"width": 1280,
"height": 720,
"cfgScale": 7.0,
"seed": randint(0, 858993459), # 随机种子,用于确保生成结果的可重复性
},
})
response = client.invoke_model(
body=inference_params,
modelId="amazon.nova-canvas-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read()) # 读取并解析响应体
base64_image = response_body.get("images")[0] # 获取返回的 Base64 编码图片数据
# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)
# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
f.write(base_64_image)
print(f"图片已成功保存为: {file_path}")