我们将使用一个图像的内容和布局来影响新图像的生成,输入图像被称为"条件图像 - conditioning image
”。这个功能可以用来更好地控制以下内容:
目前支持两种条件图像控制模式:
代码使用下面图像,将下面图版本保存为condition-image-1.png
,并放到代码目录。使用prompt*“3d动画电影风格, 一个有着疯狂金发造型的女人, 穿着绿色亮片连衣裙”*:
请注意,使用
CANNY_EDGE
作为控制模式时,它包括边缘定义的细节,如眼镜、背景中垂直线的收敛,并保持了精确的领子形状:
使用SEGMENTATION
模式时,模型可以更自由地创造性:
尝试改变controlStrength
、controlMode
和text
提示。
from random import randint
import json
import base64
import boto3
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
conditioning_image_path = "condition-image-1.png"
with open(conditioning_image_path, "rb") as image_file:
condition_image = base64.b64encode(image_file.read()).decode("utf8")
inference_params = json.dumps({
"taskType": "TEXT_IMAGE",
"textToImageParams": {
"text": "3d animated film style, a woman with a crazy blond hair style, wearing a green sequin dress",
"conditionImage": condition_image,
"controlMode": "SEGMENTATION", # "CANNY_EDGE" or "SEGMENTATION",
"controlStrength": 0.3 # How closely to match the condition image
},
"imageGenerationConfig": {
"numberOfImages": 1, # Number of variations to generate. 1 to 5.
"quality": "standard", # Allowed values are "standard" and "premium"
"width": 1280, # See README for supported output resolutions
"height": 720, # See README for supported output resolutions
"cfgScale": 8.0, # How closely the prompt will be followed
"seed": randint(0, 858993459), # Use a random seed
},
})
response = client.invoke_model(
body=inference_params,
modelId="amazon.nova-canvas-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read()) # 读取并解析响应体
base64_image = response_body.get("images")[0] # 获取返回的 Base64 编码图片数据
# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)
# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
f.write(base_64_image)
print(f"图片已成功保存为: {file_path}")