替换图像背景的一种方法是使用"OUTPAINTING"任务类型。这个功能的一个常见用例是将真实产品放置在生成的环境中。
下面的脚本将使用左边的图像作为输入。它将通过使用mask prompt(咖啡机)和文本提示(“一台咖啡机在一个简约时尚的厨房里, 旁边有一个小盘子的糕点, 一杯咖啡。高度细节,最高质量,产品图像”)来替换咖啡机后面的背景。结果将类似于第二/三张图像。
将第一张图片下载为coffee-maker-1.png
并保存到代码同级目录,运行下面代码:
from random import randint
import json
import base64
import boto3
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
# Set the image to be edited.
source_image = "coffee-maker-1.png"
# Load the input image from disk.
with open(source_image, "rb") as image_file:
source_image_base64 = base64.b64encode(image_file.read()).decode("utf-8")
inference_params = json.dumps({
"taskType": "OUTPAINTING",
"outPaintingParams": {
"image": source_image_base64,
"text": "a coffee maker in a sparse stylish kitchen, a single plate of pastries next to the coffee maker, a single cup of coffee. highly detailed, highest quality, product imagery", # Description of the background to generate
"maskPrompt": "coffee maker", # The element(s) to keep
"outPaintingMode": "PRECISE", # "DEFAULT" softens the mask. "PRECISE" keeps it sharp.
},
"imageGenerationConfig": {
"numberOfImages": 1, # Number of variations to generate. 1 to 5.
"quality": "standard", # Allowed values are "standard" and "premium"
"cfgScale": 7.0, # How closely the prompt will be followed
"seed": randint(0, 858993459), # Use a random seed
},
})
response = client.invoke_model(
body=inference_params,
modelId="amazon.nova-canvas-v1:0",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read()) # 读取并解析响应体
base64_image = response_body.get("images")[0] # 获取返回的 Base64 编码图片数据
# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)
# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
f.write(base_64_image)
print(f"图片已成功保存为: {file_path}")