Nova Canvas - 背景移除

本节将移除图像的背景, 用透明像素替换它。

Amazon Nova Canvas模型的背景移除功能可以自动将图像的主体与背景隔离,返回一个具有8位透明度的PNG图像:

img

移除后:

img

将第一张图片保存为man-in-orange.png,保存到当前目录,运行代码:

from random import randint
import json
import base64
import boto3

client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")

source_image_path = "man-in-orange.png"

# Read image from disk.
with open(source_image_path, "rb") as image_file:
    source_image_base64 = base64.b64encode(image_file.read()).decode("utf8")


inference_params = json.dumps({
    "taskType": "BACKGROUND_REMOVAL",
    "backgroundRemovalParams": {
        "image": source_image_base64,
    },
})

response = client.invoke_model(
    body=inference_params,
    modelId="amazon.nova-canvas-v1:0",
    accept="application/json",
    contentType="application/json",
)

response_body = json.loads(response.get("body").read())  # 读取并解析响应体
base64_image = response_body.get("images")[0]  # 获取返回的 Base64 编码图片数据

# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)

# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
    f.write(base_64_image)

print(f"图片已成功保存为: {file_path}")

功能介绍

背景移除 - 从原始背景中分离对象,有助于创建多用途的营销素材。

请求示例

{
    "taskType": "BACKGROUND_REMOVAL""backgroundRemovalParams": {
        "image": 字符串(Base64编码的图像)}
}                 

BACKGROUND_REMOVAL任务将返回一个具有全8位透明度的PNG图像,可以平滑、干净地隔离前景对象,并使其易于在图像编辑应用程序、演示文稿或网站中与其他元素合成。背景可以使用简单的自定义代码轻松更改为纯色。

注意: 背景移除任务会自动确定图像中哪些元素应被视为前景和背景。没有可以影响此的参数。

使用mask prompt删除对象

从图像中删除对象的一种方法是使用“maskPrompt”描述要删除的对象。下面的代码将使用mask prompt(花盆中的花)并从图像中删除所有花盆。

删除前:

img

删除后:

img

将第一张图片保存为three_pots.png, 放在代码目录,并运行:

from random import randint
import json
import base64
import boto3

client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")

source_image_path = "three_pots.jpg"

# Read image from disk.
with open(source_image_path, "rb") as image_file:
    source_image_base64 = base64.b64encode(image_file.read()).decode("utf8")


inference_params = json.dumps({
    "taskType": "INPAINTING",
    "inPaintingParams": {
        "image": source_image_base64,
        "maskPrompt": "flowers in pots",  # Description of the elements to remove
        # We intentionally omit the "text" param. By doing so, the generated
        # content will attempt to match the background.
    },
    "imageGenerationConfig": {
        "numberOfImages": 1,  # Number of variations to generate. 1 to 5.
        "quality": "standard",  # Allowed values are "standard" and "premium"
        "cfgScale": 7.0,  # How closely the prompt will be followed
        "seed": randint(0, 858993459),  # Use a random seed
    },
})

response = client.invoke_model(
    body=inference_params,
    modelId="amazon.nova-canvas-v1:0",
    accept="application/json",
    contentType="application/json",
)

response_body = json.loads(response.get("body").read())  # 读取并解析响应体
base64_image = response_body.get("images")[0]  # 获取返回的 Base64 编码图片数据

# 将 Base64 编码的图片解码为二进制数据
base_64_image = base64.b64decode(base64_image)

# 将解码后的图片保存为文件
file_path = "1.png"
with open(file_path, "wb") as f:
    f.write(base_64_image)

print(f"图片已成功保存为: {file_path}")