通过提供初始起始图像和文本提示来生成视频。
为了获得最佳效果, 文本提示应该描述图像, 并提供希望视频具有的所需动作和摄像机移动的详细信息。
将下面的图片下载保存为sample-frame-1.png
:
修改下面代码的s3_destination_bucket
、input_image_path
和video_prompt
变量并运行:
from random import randint
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
s3_destination_bucket = "xx-videos" # Change this to a unique bucket name.
# Define the image to use as the input image.
input_image_path = "sample-frame-1.png" # Must be 1280 x 720
# Load the input image as a Base64 string.
with open(input_image_path, "rb") as f:
input_image_bytes = f.read()
input_image_base64 = base64.b64encode(input_image_bytes).decode("utf-8")
inference_params = {
"taskType": "TEXT_VIDEO",
"textToVideoParams": {
"text": "dolly forward", # 向前移动
"images": [
{
"format": "png", # May be "png" or "jpeg"
"source": {
"bytes": input_image_base64
}
}
]
},
"videoGenerationConfig": {
"durationSeconds": 6, # 6 is the only supported value currently.
"fps": 24, # 24 is the only supported value currently.
"dimension": "1280x720", # "1280x720" is the only supported value currently.
"seed": randint(
0, 2147483648
), # A random seed guarantees we'll get a different result each time this code runs.
},
}
response = client.start_async_invoke(
modelInput=inference_params,
modelId="amazon.nova-reel-v1:0",
outputDataConfig={"s3OutputDataConfig": {"s3Uri": f"s3://{s3_destination_bucket}"}},
)
print(response)
{
"taskType": "TEXT_VIDEO",
"textToVideoParams": {
"text": 字符串,
"images": ImageSource[] (包含单个ImageSource的列表)
},
"videoGenerationConfig": {
"durationSeconds": 整数,
"fps": 整数,
"dimension": 字符串,
"seed": 整数
}
}
等待任务完成:
查看输出视频: