同claude模型一样,Nova也支持Converse API。
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
PRO_MODEL_ID = "us.amazon.nova-pro-v1:0"
LITE_MODEL_ID = "us.amazon.nova-lite-v1:0"
MICRO_MODEL_ID = "us.amazon.nova-micro-v1:0"
model_response = client.converse(
modelId=LITE_MODEL_ID,
messages=[
{"role": "user", "content": [{"text": "a child graduating from high school"}]},
],
system=[
{
"text": "You are an experienced publisher. For each user topic, respond with 3 potential book titles"
}
], inferenceConfig={"maxTokens": 300, "topP": 0.1, "temperature": 0.3}
)
print("\n[Response Content Text]")
print(model_response["output"]["message"]["content"][0]["text"])
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
PRO_MODEL_ID = "us.amazon.nova-pro-v1:0"
LITE_MODEL_ID = "us.amazon.nova-lite-v1:0"
MICRO_MODEL_ID = "us.amazon.nova-micro-v1:0"
model_response = client.converse(
modelId=LITE_MODEL_ID,
messages=[
{"role": "user", "content": [{"text": "How many days are in a week?"}]},
{"role": "assistant", "content": [{"text": "There are seven days in a week"}]},
{"role": "user", "content": [{"text": "Which day is the first?"}]},
],
inferenceConfig={"maxTokens": 300, "topP": 0.1, "temperature": 0.3}
)
print("\n[Full Response]")
print(json.dumps(model_response, indent=2))
print(model_response["output"]["message"]["content"][0]["text"])
输出:
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
PRO_MODEL_ID = "us.amazon.nova-pro-v1:0"
LITE_MODEL_ID = "us.amazon.nova-lite-v1:0"
MICRO_MODEL_ID = "us.amazon.nova-micro-v1:0"
model_response = client.converse_stream(
modelId=LITE_MODEL_ID,
messages=[
{"role": "user", "content": [{"text": "A camping trip"}]},
],
system=[
{
"text": "Act as a creative writing assistant. When the user provides you with a topic, provide a list of 3 potential titles for a short story based on that topic."
}
],
inferenceConfig={"maxTokens": 300, "topP": 0.1, "temperature": 0.3}
)
stream = model_response.get("stream")
if stream:
for event in stream:
if "contentBlockDelta" in event:
print(event["contentBlockDelta"]["delta"]["text"], end="")
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
PRO_MODEL_ID = "us.amazon.nova-pro-v1:0"
LITE_MODEL_ID = "us.amazon.nova-lite-v1:0"
MICRO_MODEL_ID = "us.amazon.nova-micro-v1:0"
with open("sunset.png", "rb") as f:
image = f.read()
model_response = client.converse(
modelId=LITE_MODEL_ID,
messages=[
{
"role": "user",
"content": [
{"image": {"format": "png", "source": {"bytes": image}}},
{"text": "Describe the following image"},
],
}
],
inferenceConfig={"maxTokens": 300, "topP": 0.1, "temperature": 0.3}
)
print("\n[Full Response]")
print(json.dumps(model_response, indent=2))
print(model_response["output"]["message"]["content"][0]["text"])
import json
import boto3
import base64
client = boto3.client(service_name='bedrock-runtime', region_name="us-east-1")
PRO_MODEL_ID = "us.amazon.nova-pro-v1:0"
LITE_MODEL_ID = "us.amazon.nova-lite-v1:0"
MICRO_MODEL_ID = "us.amazon.nova-micro-v1:0"
with open("the-sea.mp4", "rb") as file:
media_bytes = file.read()
media_base64 = base64.b64encode(media_bytes)
model_response = client.converse(
modelId=LITE_MODEL_ID,
messages=[
{
"role": "user",
"content": [
{"video": {"format": "mp4", "source": {"bytes": media_bytes}}},
{"text": "Describe the following video"},
],
}
],
inferenceConfig={"maxTokens": 300, "topP": 0.1, "temperature": 0.3}
)
print("\n[Full Response]")
print(json.dumps(model_response, indent=2))
print("\n[Response Content Text]")
print(model_response["output"]["message"]["content"][0]["text"])
运行结果: