genAI在办公场景中有着广泛的应用,以下是主要的应用场景:
文档处理与创作场景: 自动生成各类商务文档,包括商业计划书、项目提案、市场分析报告等专业文档,智能处理和整理各类会议记录和会议纪要,协助撰写新闻稿、公告、内部通知等公司通讯文件,提供文档翻译和本地化服务,确保多语言文档的准确性,自动生成数据分析报告,将复杂数据转化为易懂的叙述性文本。
邮件与沟通场景: 智能撰写各类商务邮件,包括日常沟通、客户联络、销售跟进等,自动处理和分类收件箱中的邮件,提供快速回复建议,协助制定邮件处理优先级,生成会议邀请和日程安排的标准化文本,提供邮件模板和个性化定制服务。
人力资源管理场景: 自动生成招聘信息和职位描述,智能筛选和评估求职者简历,生成员工培训材料和课程内容,编写绩效评估报告和反馈意见,制作员工手册和公司政策文档,处理常见的人事咨询问题。
客户服务与支持场景: 开发智能客服系统,提供24/7的自动化服务,生成标准化的客户回复模板,处理客户投诉和反馈,创建产品使用说明和常见问题解答,提供个性化的客户服务建议等。
本节将从以下几个使用场景来介绍DeepSeek的能力:
客服邮件自动回复
自动生成简历
生成会议纪要
prompt:
prompt = f"Generate an {tone} email as a response from the cutomer support team to the customer for the following email:\n\n{email_content}\n\n" \
"Ensure the response is polite, clear, and professional."
python代码:
import requests
# DeepSeek API 接口地址
OLLAMA_URL = "http://localhost:11434/api/generate"
def generate_email_response(email_content, tone="Formal"):
"""
使用 DeepSeek AI 生成适当的电子邮件回复
参数:
email_content: 需要回复的邮件内容
tone: 回复的语气,默认为正式语气
返回:
生成的邮件回复内容
"""
# 构建提示词,要求AI生成客服团队的邮件回复
prompt = f"Generate an {tone} email as a response from the cutomer support team to the customer for the following email:\n\n{email_content}\n\n" \
"Ensure the response is polite, clear, and professional."
# 多语言邮件回复提示词
# prompt = f"Write an email response in {language}:\n\n{email_content}"
# 构建请求参数
payload = {
"model": "deepseek-r1", # 使用 deepseek-r1 模型
"prompt": prompt, # 提示词
"stream": False # 不使用流式响应
}
# 发送 POST 请求到 DeepSeek API
response = requests.post(OLLAMA_URL, json=payload)
# 处理响应结果
if response.status_code == 200:
return response.json().get("response", "No response generated.")
else:
return f"Error: {response.text}"
# 测试 AI 邮件回复功能
if __name__ == "__main__":
# 测试邮件内容
test_email = "I have a problem with my account. I can't log in. Please help me."
print("### AI-Generated Email Response ###")
print(generate_email_response(test_email))
测试结果:
使用gradio生成web页面:
import requests
import gradio as gr
# DeepSeek API 接口地址
OLLAMA_URL = "http://localhost:11434/api/generate"
def generate_email_response(email_content, tone="Formal"):
"""
使用 DeepSeek AI 生成适当的电子邮件回复
参数:
email_content: 需要回复的邮件内容
tone: 回复的语气,默认为正式语气
返回:
生成的邮件回复内容
"""
# 构建提示词,要求AI生成客服团队的邮件回复
prompt = f"Generate an {tone} email as a response from the cutomer support team to the customer for the following email:\n\n{email_content}\n\n" \
"Ensure the response is polite, clear, and professional."
# 多语言邮件回复提示词
# prompt = f"Write an email response in {language}:\n\n{email_content}"
# 构建请求参数
payload = {
"model": "deepseek-r1", # 使用 deepseek-r1 模型
"prompt": prompt, # 提示词
"stream": False # 不使用流式响应
}
# 发送 POST 请求到 DeepSeek API
response = requests.post(OLLAMA_URL, json=payload)
# 处理响应结果
if response.status_code == 200:
return response.json().get("response", "No response generated.")
else:
return f"Error: {response.text}"
# 创建 Gradio 界面
interface = gr.Interface(
fn=generate_email_response, # 调用邮件回复生成函数
inputs=[
gr.Textbox(lines=5, placeholder="在此粘贴邮件内容"), # 文本输入框,5行
gr.Radio(["Formal", "Casual", "Friendly"], label="语气"), # 单选按钮选择语气
],
outputs=gr.Textbox(label="AI生成的邮件回复"), # 输出文本框
title="AI邮件回复助手", # 界面标题
description="粘贴邮件内容,让AI生成专业的回复。" # 界面描述
)
# 启动Web应用
if __name__ == "__main__":
interface.launch() # 启动Gradio界面
启动后进行测试:
prompt如下:
prompt = f"Generate a professional resume based on the following details:\n\n" \
f"Name: {name}\nJob Role: {job_role}\nExperience: {experience} years\n" \
f"Skills: {skills}\nEducation: {education}\nSummary: {summary}\n\n" \
f"Ensure the resume is ATS-friendly, well-formatted, and professional."
代码:
import requests
# DeepSeek API URL
# Ollama API的URL地址
OLLAMA_URL = "http://localhost:11434/api/generate"
def generate_resume(name, job_role, experience, skills, education, summary):
"""
使用DeepSeek AI生成结构化的专业简历。
"""
# 构建提示词,包含简历所需的所有信息
prompt = f"Generate a professional resume based on the following details:\n\n" \
f"Name: {name}\nJob Role: {job_role}\nExperience: {experience} years\n" \
f"Skills: {skills}\nEducation: {education}\nSummary: {summary}\n\n" \
f"Ensure the resume is ATS-friendly, well-formatted, and professional."
# 旧的提示词模板,已注释掉
# prompt = f"Generate a resume in {language}:\n\n{name}, {job_role}, {experience} years, {skills}, {education}"
# 准备发送给API的数据
payload = {
"model": "deepseek-r1",
"prompt": prompt,
"stream": False
}
# 发送POST请求到Ollama API
response = requests.post(OLLAMA_URL, json=payload)
# 检查响应状态并返回结果
if response.status_code == 200:
return response.json().get("response", "No resume generated.")
else:
return f"Error: {response.text}"
# 测试简历生成器
if __name__ == "__main__":
test_resume = generate_resume("John Doe", "Software Engineer", "3",
"Python, AI, Web Development", "B.Sc. CS", "Experienced in AI and cloud computing.")
print("### AI-Generated Resume ###")
print(test_resume)
使用gradio做成webapp:
import requests
import gradio as gr
# Ollama API的URL地址
OLLAMA_URL = "http://localhost:11434/api/generate"
def generate_resume(name, job_role, experience, skills, education, summary):
"""
使用DeepSeek AI生成结构化的专业简历。
"""
# 构建提示词,包含简历所需的所有信息
prompt = f"Generate a professional resume based on the following details:\n\n" \
f"Name: {name}\nJob Role: {job_role}\nExperience: {experience} years\n" \
f"Skills: {skills}\nEducation: {education}\nSummary: {summary}\n\n" \
f"Ensure the resume is ATS-friendly, well-formatted, and professional."
# 旧的提示词模板,已注释掉
# prompt = f"Generate a resume in {language}:\n\n{name}, {job_role}, {experience} years, {skills}, {education}"
# 准备发送给API的数据
payload = {
"model": "deepseek-r1",
"prompt": prompt,
"stream": False
}
# 发送POST请求到Ollama API
response = requests.post(OLLAMA_URL, json=payload)
# 检查响应状态并返回结果
if response.status_code == 200:
return response.json().get("response", "No resume generated.")
else:
return f"Error: {response.text}"
# 创建Gradio界面
interface = gr.Interface(
fn=generate_resume, # 指定处理函数
inputs=[ # 定义输入组件
gr.Textbox(label="Full Name"), # 姓名输入框
gr.Textbox(label="Job Role"), # 职位输入框
gr.Slider(0, 50, label="Years of Experience"), # 工作年限滑块
gr.Textbox(label="Skills (comma-separated)"), # 技能输入框(逗号分隔)
gr.Textbox(label="Education"), # 教育经历输入框
gr.Textbox(label="Summary (Optional)"), # 个人总结输入框(可选)
],
outputs=gr.Textbox(label="Generated Resume"), # 定义输出组件为文本框
title="AI-Powered Resume Generator", # 设置应用标题
description="Enter your details to generate a professional resume." # 设置应用描述
)
# Launch the web app
if __name__ == "__main__":
interface.launch()
运行后的效果:
prompt:
# 构建提示词,包含会议记录内容和要求提取的关键信息
prompt = f"Summarize the following meeting transcript into structured meeting minutes:\n\n{transcript}\n\n" \
"Extract key discussions, decisions made, and action items."
代码:
import requests
# Ollama API的URL地址
OLLAMA_URL = "http://localhost:11434/api/generate"
def generate_meeting_minutes(transcript):
"""
使用DeepSeek AI生成结构化的会议纪要。
"""
# 构建提示词,包含会议记录内容和要求提取的关键信息
prompt = f"Summarize the following meeting transcript into structured meeting minutes:\n\n{transcript}\n\n" \
"Extract key discussions, decisions made, and action items."
# 准备发送给API的数据
payload = {
"model": "deepseek-r1",
"prompt": prompt,
"stream": False
}
# 发送POST请求到Ollama API
response = requests.post(OLLAMA_URL, json=payload)
# 检查响应状态并返回结果
if response.status_code == 200:
return response.json().get("response", "No summary generated.")
else:
return f"Error: {response.text}"
# 测试会议纪要生成器
if __name__ == "__main__":
test_transcript = "John: Q4 sales increased by 15%. Sarah: We need to increase the marketing budget. Decision: Approve higher budget."
print("### AI-Generated Meeting Minutes ###")
print(generate_meeting_minutes(test_transcript))
效果: