清理

清理我们在之前的笔记本中创建的所有资源非常重要,因为这些资源可能会产生成本。

此笔记本应该可以与 Data Science 3.0Python 3ml.t3.medium 内核在 SageMaker Studio 中很好地配合使用

检索资源名称以进行删除

%store -r bucket_name
%store -r role_name
%store -r role_arn
%store -r policy_arn
print(bucket_name)
print(role_name)
print(role_arn)
print(policy_arn)
import boto3
session = boto3.session.Session()
region = session.region_name
s3_client = boto3.client('s3')
iam = boto3.client('iam', region_name=region)

删除 S3 存储桶

objects = s3_client.list_objects(Bucket=bucket_name)  
if 'Contents' in objects:
    for obj in objects['Contents']:
        s3_client.delete_object(Bucket=bucket_name, Key=obj['Key']) 
s3_client.delete_bucket(Bucket=bucket_name)

删除角色和策略

iam.detach_role_policy(RoleName=role_name, PolicyArn=policy_arn)
iam.delete_role(RoleName=role_name)