清理我们在之前的笔记本中创建的所有资源非常重要,因为这些资源可能会产生成本。
此笔记本应该可以与
Data Science 3.0
、Python 3
和ml.t3.medium
内核在 SageMaker Studio 中很好地配合使用
%store -r bucket_name
%store -r role_name
%store -r role_arn
%store -r policy_arn
print(bucket_name)
print(role_name)
print(role_arn)
print(policy_arn)
import boto3
session = boto3.session.Session()
region = session.region_name
s3_client = boto3.client('s3')
iam = boto3.client('iam', region_name=region)
objects = s3_client.list_objects(Bucket=bucket_name)
if 'Contents' in objects:
for obj in objects['Contents']:
s3_client.delete_object(Bucket=bucket_name, Key=obj['Key'])
s3_client.delete_bucket(Bucket=bucket_name)
iam.detach_role_policy(RoleName=role_name, PolicyArn=policy_arn)
iam.delete_role(RoleName=role_name)